Role of high-voltage activated potassium currents in high-frequency neuronal firing: evidence from a basal metazoan.
نویسندگان
چکیده
Certain neurons of vertebrates are specialized for high-frequency firing. Interestingly, high-frequency firing is also seen in central neurons in basal bilateral metazoans. Recently, the role of potassium currents with rightward-shifted activation curves in producing high-frequency firing has come under scrutiny. We apply intracellular recording, patch-clamp techniques, and compartmental modeling to examine the roles of rightward-shifted potassium currents in repetitive firing and shaping of action potentials in central neurons of the flatworm, Notoplana atomata (Phylum Platyhelminthes). The kinetic properties of potassium and sodium currents were determined from patch-clamp experiments on dissociated brain cells. To predict the effects of changing the steady-state and kinetic properties of these potassium currents, these data were incorporated into a computer model of a 30-microm spherical cell with the levels of current adjusted to approximate the values recorded in voltage-clamp experiments. The model was able to support regenerative spikes at high frequencies in response to injected current. Current-clamp recordings of cultured cells and of neurons in situ also showed evidence of very-high-frequency firing. Adjusting the ratio of inactivating to non-inactivating potassium currents had little effect upon the firing pattern of the cell or its ability to fire at high frequencies, whereas the presence of the non-inactivating current was necessary for repetitive firing. Computer simulations suggested that the rightward shift in voltage sensitivity confers a raised firing threshold, while rapid channel kinetics underlie high frequency firing, and the large activation range enhances the coding range of the cell.
منابع مشابه
Firing frequency and entrainment maintained in primary auditory neurons in the presence of combined BDNF and NT3
Primary auditory neurons rely on neurotrophic factors for development and survival. We previously determined that exposure to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) alters the activity of hyperpolarization-activated currents (Ih) in this neuronal population. Since potassium channels are sensitive to neurotrophins, and changes in Ih are often accompanied by a shift in ...
متن کاملThe effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa
Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...
متن کاملSynergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study
Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke...
متن کاملCa2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala.
In many neurons, trains of action potentials show frequency-dependent broadening. This broadening results from the voltage-dependent inactivation of K+ currents that contribute to action potential repolarisation. In different neuronal cell types these K+ currents have been shown to be either slowly inactivating delayed rectifier type currents or rapidly inactivating A-type voltage-gated K+ curr...
متن کاملPower Spectral Density Analysis of Purkinje Cell Tonic and Burst Firing Patterns From a Rat Model of Ataxia and Riluzole Treated
Introduction: Purkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acety...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 2 شماره
صفحات -
تاریخ انتشار 2002